A Review on Impacts, Resistance Pattern and Spoilage of Vegetables Associated Microbes

Authors

  • Wajiha Yousuf Institute of Molecular biology and Biotechnology, University of Lahore, Pakistan
  • Javaid Yousuf Teaching Hospital, University of Lahore, Pakistan
  • Saif Ud Din Karakorum International University Gilgit
  • Maisoor Ahmed Nafees Department of Animal Sciences, Karakorum International University Gilgit, Pakistan
  • Abdul Razaq Department of Plant Sciences, Karakorum International University Gilgit, Pakistan
  • Babar Hussain Department of Plant Sciences, Karakorum International University Gilgit, Pakistan

Keywords:

Contamination, Antimicrobial resistance, Micribial growth, etiological agent, causative agent.

Abstract

Vegetable spoilage produces various microbes of different origins like parasites, fungi, viruses, and bacteria. This causes infections and diseases in vegetables, and later on, when humans eat these vegetables; diseases induce in humans. So, to prevent human diseases, the symptoms of various infections in vegetables must be known. Moreover, the conditions supporting the infections in vegetables must be understood. So that spoiled vegetable consumption can be prevented. Sometimes spoiled vegetables are regarded as disease free and suitable for consumption. These misconceptions sometimes lead to lethal human diseases, which in history led to major outbreaks. The antimicrobial resistance is faced by microbes which deteriorate the situation and make the cure of diseases.

References

R. Phar, “Present status and future prospects of vegetable research and develop- lvlent in india Exports of vegetables from India According to Sengupta ( 1986 ) India ’ s exports of fruits and vegetables in their fresh,” 1987.

E. Toe et al., “Bacteriological Quality and Risk Factors for Contamination of Raw Mixed Vegetable Salads Served in Collective Catering in Abidjan (Ivory Coast),” Adv. Microbiol., vol. 7, no. 6, pp. 405–419, Jun. 2017, doi: 10.4236/AIM.2017.76033.

S. A. Mir, M. A. Shah, M. M. Mir, B. N. Dar, R. Greiner, and S. Roohinejad, “Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens,” Food Control, vol. 85, pp. 235–244, Mar. 2018, doi: 10.1016/J.FOODCONT.2017.10.006.

T. Nawas et al., “Microbiological Quality and Antibiogram of E. coli, Salmonella and Vibrio of Salad and Water from Restaurants of Chittagong,” J. Environ. Sci. Nat. Resour., vol. 5, no. 1, pp. 159–166, Aug. 2012, doi: 10.3329/JESNR.V5I1.11571.

V. H. Tournas, “Moulds and yeasts in fresh and minimally processed vegetables, and sprouts,” Int. J. Food Microbiol., vol. 99, no. 1, pp. 71–77, Mar. 2005, doi: 10.1016/J.IJFOODMICRO.2004.08.009.

D. Woldetsadik, P. Drechsel, B. Keraita, F. Itanna, B. Erko, and H. Gebrekidan, “Microbiological quality of lettuce (Lactuca sativa) irrigated with wastewater in Addis Ababa, Ethiopia and effect of green salads washing methods,” Int. J. Food Contam., vol. 4, no. 1, 2017, doi: 10.1186/s40550-017-0048-8.

M. S. Alam, F. Feroz, H. Rahman, K. K. Das, and R. Noor, “Microbiological contamination sources of freshly cultivated vegetables,” Nutr. Food Sci., vol. 45, no. 4, pp. 646–658, 2015, doi: 10.1108/NFS-04-2015-0032.

D. Faour-Klingbeil, M. Murtada, V. Kuri, and E. C. D. Todd, “Understanding the routes of contamination of ready-to-eat vegetables in the Middle East,” Food Control, vol. 62, pp. 125–133, Apr. 2016, doi: 10.1016/J.FOODCONT.2015.10.024.

M. Addis and D. Sisay, “Journal of Tropical Diseases A Review on Major Food Borne Bacterial Illnesses,” J. Trop. Dis., vol. 3, no. 4, pp. 1–7, 2015, doi: 10.4176/2329891X.1000176.

S. Basharat, S. Mazhar, R. Yasmeen, and W. Hamid, “Evaluation of Microbial Contamination via Wastewater Collected from Different Oil Industries and its Treatment Using Various Coagulants,” Int. J. Innov. Sci. Technol., vol. 4, no. 2, pp. 392–403, 2022, [Online]. Available: https://journal.50sea.com/index.php/IJIST/article/view/224

S. M. Rabia Rehman and Mawra Gohar, “Evaluation of Microbial Contamination in Meat and its Control Using Preservatives,” Int. J. Innov. Sci. Technol. Eval., vol. 4, no. 2, pp. 404–415, 2022.

J. W. Buck, R. R. Walcott, and L. R. Beuchat, “Recent Trends in Microbiological Safety of Fruits and Vegetables,” Plant Heal. Prog., vol. 4, no. 1, Jan. 2003, doi: 10.1094/PHP-2003-0121-01-RV.

S. S. Al-Abri, A. K. Al-Jardani, M. S. Al-Hosni, P. J. Kurup, S. Al-Busaidi, and N. J. Beeching, “A hospital acquired outbreak of Bacillus cereus gastroenteritis, Oman,” J. Infect. Public Health, vol. 4, no. 4, pp. 180–186, Sep. 2011, doi: 10.1016/J.JIPH.2011.05.003.

S. Hauswaldt, M. Nitschke, F. Sayk, W. Solbach, and J. K. M. Knobloch, “Lessons Learned From Outbreaks of Shiga Toxin Producing Escherichia coli,” Curr. Infect. Dis. Rep., vol. 15, no. 1, pp. 4–9, Feb. 2013, doi: 10.1007/S11908-012-0302-4.

G. Berg, A. Erlacher, K. Smalla, and R. Krause, “Vegetable microbiomes: Is there a connection among opportunistic infections, human health and our ‘gut feeling’?,” Microb. Biotechnol., vol. 7, no. 6, pp. 487–495, 2014, doi: 10.1111/1751-7915.12159.

Z. Shen and Z. Li, “Research on The Application of Blockchain in The Supply Chain From The Perspective of Big Data,” Proc. - 2021 3rd Int. Conf. Mach. Learn. Big Data Bus. Intell. MLBDBI 2021, pp. 420–424, 2021, doi: 10.1109/MLBDBI54094.2021.00085.

S. Mazhar, R. Yasmeen, A. Chaudhry, and K. Summia, “Role of Microorganisms in Modern Food Industry,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 65–77, 2022, [Online]. Available: https://journal.50sea.com/index.php/IJIST/article/view/82

J. W. Leff and N. Fierer, “Bacterial communities associated with the surfaces of fresh fruits and vegetables,” PLoS One, vol. 8, no. 3, Mar. 2013, doi: 10.1371/JOURNAL.PONE.0059310.

J. A. Reis, A. T. Paula, S. N. Casarotti, and A. L. B. Penna, “Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications,” Food Eng. Rev. 2012 42, vol. 4, no. 2, pp. 124–140, Apr. 2012, doi: 10.1007/S12393-012-9051-2.

W. H. Holzapfel, R. Geisen, and U. Schillinger, “Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes,” Int. J. Food Microbiol., vol. 24, no. 3, pp. 343–362, Jan. 1995, doi: 10.1016/0168-1605(94)00036-6.

J. Cleveland, T. J. Montville, I. F. Nes, and M. L. Chikindas, “Bacteriocins: safe, natural antimicrobials for food preservation,” Int. J. Food Microbiol., vol. 71, no. 1, pp. 1–20, Dec. 2001, doi: 10.1016/S0168-1605(01)00560-8.

M. Rizwan and T. Jamal, “Degradation of Bioplastics under the Influence of Several Environmental conditions,” Int. J. Innov. Sci. Technol., vol. 2, no. 3, pp. 93–101, 2021.

J. M. Jay, Modern Food Microbiology. Boston, MA: Springer US, 1995. doi: 10.1007/978-1-4615-7476-7.

J. O. Mundt, W. F. Graham, and I. E. McCarty, “Spherical Lactic Acid-producing Bacteria of Southern-grown Raw and Processed Vegetables,” Appl. Microbiol., vol. 15, no. 6, pp. 1303–1308, Nov. 1967, doi: 10.1128/AM.15.6.1303-1308.1967.

K. Hussain, M. Waseem, I. Mumtaz, and S. Riaz, “Molecular Characterization of Deciphering Fungal Community Structure in Zea Mays L. and Triticum Aestivum L,” Int. J. Innov. Sci. Technol., vol. 4, no. 3, pp. 727–737, 2022.

“Foodborne Outbreaks of Enterotoxigenic Escherichia coli -- Rhode Island and New Hampshire, 1993.” https://www.cdc.gov/mmwr/preview/mmwrhtml/00025017.htm (accessed Jul. 21, 2022).

M. L. Ackers et al., “An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption,” J. Infect. Dis., vol. 177, no. 6, pp. 1588–1593, 1998, doi: 10.1086/515323.

P. Mermin, J., Mead, P., Gensheimer, K., and Griffifin, “Outbreak of E. coli O157:H7 infections among Boy Scouts in Maine, Abstract No. K44 36th Interscience Conference on Antimicrobial Agents andChemotherapy, Am.,” 1996, pp. 15–28.

X. Guo, J. Chen, R. E. Brackett, and L. R. Beuchat, “Survival of Salmonellae on and in Tomato Plants from the Time of Inoculation at Flowering and Early Stages of Fruit Development through Fruit Ripening,” Appl. Environ. Microbiol., vol. 67, no. 10, p. 4760, Oct. 2001, doi: 10.1128/AEM.67.10.4760-4764.2001.

J. A. Vázquez-Boland et al., “Listeria Pathogenesis and Molecular Virulence Determinants,” Clin. Microbiol. Rev., vol. 14, no. 3, p. 584, 2001, doi: 10.1128/CMR.14.3.584-640.2001.

K. Sizmur and C. W. Walker, “Listeria in prepacked salads,” Lancet (London, England), vol. 1, no. 8595, p. 1167, May 1988, doi: 10.1016/S0140-6736(88)91983-6.

H. Davis, J. P. Taylor, J. N. Perdue, G. N. Stelma, R. Rowntree, and K. D. Greene, “A shigellosis outbreak traced to commercially distributed shredded lettuce,” Am. J. Epidemiol., vol. 128, no. 6, pp. 1312–1321, 1988, doi: 10.1093/OXFORDJOURNALS.AJE.A115084.

J. A. Frost, M. B. McEvoy, C. A. Bentley, and Y. Andersson, “An outbreak of Shigella sonnei infection associated with consumption of iceberg lettuce,” Emerg. Infect. Dis., vol. 1, no. 1, pp. 26–29, 1995, doi: 10.3201/EID0101.950105.

R. Cook, K., Boyce, T. Langkop, C., Koo, K., Swartz, M., Ewert, D., Sowers, E., Wells, J., and Tauxe, “A multi-state outbreak of Shigellaflflexneri traced to imported green onions,” in 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, Am. Soc. Microbiol., Washington,D.C, 1995, pp. 17–20.

B. L. Portnoy, J. M. Goepfert, and S. M. Harmon, “An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetable sprouts,” Am. J. Epidemiol., vol. 103, no. 6, pp. 589–594, 1976, doi: 10.1093/OXFORDJOURNALS.AJE.A112263.

S. P. Shaik and P. Thomas, “In Vitro Activation of Seed-Transmitted Cultivation-Recalcitrant Endophytic Bacteria in Tomato and Host−Endophyte Mutualism,” Microorganisms, vol. 7, no. 5, May 2019, doi: 10.3390/MICROORGANISMS7050132.

C. A. Van Beneden et al., “Multinational outbreak of Salmonella enterica serotype Newport infections due to contaminated alfalfa sprouts,” JAMA, vol. 281, no. 2, pp. 158–162, Jan. 1999, doi: 10.1001/JAMA.281.2.158.

H. D. Backer, J. C. Mohle-Boetani, S. B. Werner, S. L. Abbott, J. Farrar, and D. J. Vugia, “High incidence of extra-intestinal infections in a Salmonella Havana outbreak associated with alfalfa sprouts,” Public Health Rep., vol. 115, no. 4, pp. 339–345, 2000, doi: 10.1093/PHR/115.4.339.

T. Breuer et al., “A multistate outbreak of Escherichia coli O157:H7 infections linked to alfalfa sprouts grown from contaminated seeds,” Emerg. Infect. Dis., vol. 7, no. 6, pp. 977–982, 2001, doi: 10.3201/EID0706.010609.

Y. T. H. P. Van Duynhoven et al., “Salmonellaenterica Serotype Enteritidis Phage Type 4b Outbreak Associated with Bean Sprouts,” Emerg. Infect. Dis., vol. 8, no. 4, p. 440, 2002, doi: 10.3201/EID0804.010213.

S. Sivapalasingam, C. R. Friedman, L. Cohen, and R. V. Tauxe, “Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997,” J. Food Prot., vol. 67, no. 10, pp. 2342–2353, 2004, doi: 10.4315/0362-028X-67.10.2342.

P. B. McGarvey et al., “Expression of the rabies virus glycoprotein in transgenic tomatoes,” Biotechnology. (N. Y)., vol. 13, no. 13, pp. 1484–1487, 1995, doi: 10.1038/NBT1295-1484.

K. M. Gandhi, R. E. Mandrell, and P. Tian, “Binding of virus-like particles of Norwalk virus to romaine lettuce veins,” Appl. Environ. Microbiol., vol. 76, no. 24, pp. 7997–8003, Dec. 2010, doi: 10.1128/AEM.01566-10.

Y. H. Hui, “Foodborne Disease Handbook, Second Edition,” Foodborne Dis. Handbook, Second Ed., Dec. 2018, doi: 10.1201/9781351072083/FOODBORNE-DISEASE-HANDBOOK-HUI-SYED-SATTAR-MURRELL-WAI-KIT-NIP-PEGGY-STANFIELD.

A. C. Rodrigues, M. D. C. da Silva, R. Â. S. Pereira, and L. C. Pinto, “Prevalence of contamination by intestinal parasites in vegetables (Lactuca sativa L. and Coriandrum sativum L.) sold in markets in Belém, northern Brazil,” J. Sci. Food Agric., vol. 100, no. 7, pp. 2859–2865, May 2020, doi: 10.1002/JSFA.10265.

S. Almeria, H. N. Cinar, and J. P. Dubey, “Cyclospora cayetanensis and Cyclosporiasis: An Update,” Microorganisms, vol. 7, no. 9, Sep. 2019, doi: 10.3390/MICROORGANISMS7090317.

J. G. Morris and D. J. Vugia, Foodborne infections and intoxications, vol. Fifth Edit. 2021. doi: https://doi.org/10.1016/C2018-0-02948-5.

U. Ryan, N. Hijjawi, Y. Feng, and L. Xiao, “Giardia: an under-reported foodborne parasite,” Int. J. Parasitol., vol. 49, no. 1, pp. 1–11, Jan. 2019, doi: 10.1016/J.IJPARA.2018.07.003.

L. Li et al., “Ozone treatment inhibits dry rot development and diacetoxyscirpenol accumulation in inoculated potato tuber by influencing growth of Fusarium sulphureum and ergosterol biosynthesis,” Postharvest Biol. Technol., vol. 185, p. 111796, Mar. 2022, doi: 10.1016/J.POSTHARVBIO.2021.111796.

M. Masiello, S. Somma, V. Ghionna, A. Francesco Logrieco, and A. Moretti, “In Vitro and in Field Response of Different Fungicides against Aspergillus flavus and Fusarium Species Causing Ear Rot Disease of Maize,” Toxins (Basel)., vol. 11, no. 1, Jan. 2019, doi: 10.3390/TOXINS11010011.

Z. Zhao et al., “Method Development and Validation for the Analysis of Emerging and Traditional Fusarium Mycotoxins in Pepper, Potato, Tomato, and Cucumber by UPLC-MS/MS,” Food Anal. Methods 2018 116, vol. 11, no. 6, pp. 1780–1788, Feb. 2018, doi: 10.1007/S12161-018-1180-7.

T. A. El-desouky, “Protect peanut kernels from Aspergillus spp and their mycotoxins during storage by aqueous extract of carob pulp,” pp. 1–20, 2022.

F. A. Abo Nouh, S. A. Gezaf, and A. M. Abdel-Azeem, “Mycotoxins: Potential as Biocontrol Agents,” pp. 217–237, 2020, doi: 10.1007/978-3-030-48474-3_7.

M. M. M. De Souza and A. Q. L. De Souza, “Screening of Alkaloid-Producing Endophytic,” vol. 00, no. 00, pp. 1–8, 2021.

O. Oladejo and J. Imani, “Inhibitory Effect of CUSTOS, a Formulated Allium-Based Extract, on the Growth of Some Selected Plant Pathogens,” Int. J. Plant Biol., vol. 13, no. 2, pp. 44–54, 2022, doi: 10.3390/ijpb13020006.

D. Knorr, M. A. Augustin, and B. Tiwari, “Advancing the Role of Food Processing for Improved Integration in Sustainable Food Chains,” Front. Nutr., vol. 7, p. 34, Apr. 2020, doi: 10.3389/FNUT.2020.00034/BIBTEX.

J. G. Surak, “Phytoalexins and human health a review,” Proc. Fla. State Hort. Soc., vol. 91, pp. 256–258, 1978.

F. Kurosaki and A. Nishi, “Isolation and antimicrobial activity of the phytoalexin 6-methoxymellein from cultured carrot cells,” Phytochemistry, vol. 22, no. 3, pp. 669–672, Jan. 1983, doi: 10.1016/S0031-9422(00)86959-9.

L. D. Scheel, V. B. Perone, R. L. Larkin, and R. E. Kupel, “The Isolation and Characterization of Two Phototoxic Furanocoumarins (Psoralens) from Diseased Celery,” Biochemistry, vol. 2, no. 5, pp. 1127–1131, Sep. 1963, doi: 10.1021/BI00905A038/ASSET/BI00905A038.FP.PNG_V03.

G. E. WOOD, “Stress Metabolites of White Potatoes,” pp. 369–386, Jun. 1976, doi: 10.1021/BA-1976-0149.CH017.

C. M. Wu, P. E. Koehler, and J. C. Ayres, “Isolation and identification of xanthotoxin (8-methoxypsoralen) and bergapten (5-methoxypsoralen) from celery infected with Sclerotinia sclerotiorum,” Appl. Microbiol., vol. 23, no. 5, pp. 852–856, May 1972, doi: 10.1128/AM.23.5.852-856.1972.

R. Singh, M. Kumar, A. Mittal, and P. K. Mehta, “Microbial metabolites in nutrition, healthcare and agriculture,” 3 Biotech, vol. 7, no. 1, May 2017, doi: 10.1007/S13205-016-0586-4.

J. Campos, J. Mourão, N. Pestana, L. Peixe, C. Novais, and P. Antunes, “Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes,” Int. J. Food Microbiol., vol. 166, no. 3, pp. 464–470, Sep. 2013, doi: 10.1016/J.IJFOODMICRO.2013.08.005.

V. Pothakos, C. Snauwaert, P. De Vos, G. Huys, and F. Devlieghere, “Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment,” Int. J. Food Microbiol., vol. 185, pp. 7–16, Aug. 2014, doi: 10.1016/J.IJFOODMICRO.2014.05.009.

B. P. Montoro, N. Benomar, L. L. Lerma, S. C. Gutiérrez, A. Gálvez, and H. Abriouel, “Fermented aloreña table olives as a source of potential probiotic Lactobacillus pentosus strains,” Front. Microbiol., vol. 7, no. OCT, 2016, doi: 10.3389/fmicb.2016.01583.

T. Oliveira, E. Ramalhosa, L. Nunes, J. A. Pereira, E. Colla, and E. L. Pereira, “Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal,” Innov. Food Sci. Emerg. Technol., vol. 44, pp. 167–172, Dec. 2017, doi: 10.1016/J.IFSET.2017.06.003.

I. D’Antuono et al., “Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility,” Food Chem., vol. 248, pp. 137–145, May 2018, doi: 10.1016/J.FOODCHEM.2017.12.032.

M. Tufariello et al., “New process for production of fermented black table olives using selected autochthonous microbial resources,” Front. Microbiol., vol. 6, no. SEP, p. 1007, 2015, doi: 10.3389/FMICB.2015.01007/BIBTEX.

C. Porru et al., “Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations,” Food Microbiol., vol. 69, pp. 33–42, Feb. 2018, doi: 10.1016/J.FM.2017.07.010.

U. Pato and I. S. Surono, “Bile and acid tolerance of lactic acid bacteria isolated from tempoyak and their probiotic potential,” J. Agric. Technol., vol. 9, no. 7, pp. 1849–1862, 2013, [Online]. Available: http://www.ijat-aatsea.com

H. A. Sakandar, K. Usman, and M. Imran, “Isolation and characterization of gluten-degrading Enterococcus mundtii and Wickerhamomyces anomalus, potential probiotic strains from indigenously fermented sourdough (Khamir),” LWT, vol. 91, pp. 271–277, May 2018, doi: 10.1016/J.LWT.2018.01.023.

M. Palla et al., “Exploitation of autochthonous Tuscan sourdough yeasts as potential starters,” Int. J. Food Microbiol., vol. 302, pp. 59–68, Aug. 2019, doi: 10.1016/J.IJFOODMICRO.2018.08.004.

R. Tauxe, H. Kruse, C. Hedberg, M. Potter, J. Madden, and K. Wachsmuth, “Microbial Hazards and Emerging Issues Associated with Produce † A Preliminary Report to the National Advisory Committee on Microbiologic Criteria for Foods,” J. Food Prot., vol. 60, no. 11, pp. 1400–1408, 1997, doi: 10.4315/0362-028X-60.11.1400.

A. L. (Albert L. Ryall, W. J. Lipton, and W. T. (Wilbur T. Pentzer, Handling, transportation, and storage of fruits and vegetables, 2nd ed. Westport Conn.: AVI Pub. Co., 1979.

L. R. Beuchat, “Food and beverage mycology,” p. 527, 1978, Accessed: Jul. 22, 2022. [Online]. Available: https://books.google.com/books/about/Food_and_Beverage_Mycology.html?id=D9dn551vbYcC

O. Filtenborg, J. C. Frisvad, and U. Thrane, “Moulds in food spoilage,” Int. J. Food Microbiol., vol. 33, no. 1, pp. 85–102, 1996, doi: 10.1016/0168-1605(96)01153-1.

K. Raper, The genus Aspergillus. Baltimore: Williams & Wilkins, 1965.

M. A. Vincent and J. I. Pitt, “Penicillium allii, a New Species from Egyptian Garlic,” Mycologia, vol. 81, no. 2, p. 300, Mar. 1989, doi: 10.2307/3759715.

J. C. Frisvad and O. Filtenborg, “Terverticillate Penicillia: Chemotaxonomy and Mycotoxin Production,” https://doi.org/10.1080/00275514.1989.12025674, vol. 81, no. 6, pp. 837–861, Nov. 2018, doi: 10.1080/00275514.1989.12025674.

Z. Gurler, S. Pamuk, Y. Yildirim, and N. Ertas, “The microbiological quality of ready-to-eat salads in Turkey: A focus on Salmonella spp. and Listeria monocytogenes,” Int. J. Food Microbiol., vol. 196, pp. 79–83, Mar. 2015, doi: 10.1016/J.IJFOODMICRO.2014.11.021.

D. Korsak, A. Borek, S. Daniluk, A. Grabowska, and K. Pappelbaum, “Antimicrobial susceptibilities of Listeria monocytogenes strains isolated from food and food processing environment in Poland,” Int. J. Food Microbiol., vol. 158, no. 3, pp. 203–208, Sep. 2012, doi: 10.1016/J.IJFOODMICRO.2012.07.016.

M. I. Khalid, J. Y. H. Tang, N. H. Baharuddin, N. S. Rahman, N. F. Rahimi, and S. Radu, “Prevalence, antibiogram, and cdt genes of toxigenic Campylobacter jejuni in salad style vegetables (ulam) at farms and retail outlets in Terengganu,” J. Food Prot., vol. 78, no. 1, pp. 65–71, Jan. 2015, doi: 10.4315/0362-028X.JFP-14-109.

Y. Li et al., “Prevalence and characteristics of Salmonella isolates recovered from retail raw chickens in Shaanxi Province, China,” Poult. Sci., vol. 99, no. 11, pp. 6031–6044, Nov. 2020, doi: 10.1016/J.PSJ.2020.07.038.

C. Yoke-Kqueen et al., “Characterization of multiple-antimicrobial-resistant Salmonella enterica Subsp. enterica isolated from indigenous vegetables and poultry in Malaysia,” Lett. Appl. Microbiol., vol. 46, no. 3, pp. 318–324, Mar. 2008, doi: 10.1111/J.1472-765X.2007.02311.X.

P. Verma, V. V. Saharan, S. Nimesh, and A. P. Singh, “Phenotypic and virulence traits of Escherichia coli and Salmonella strains isolated from vegetables and fruits from India,” J. Appl. Microbiol., vol. 125, no. 1, pp. 270–281, Jul. 2018, doi: 10.1111/JAM.13754.

C. W. Kim et al., “Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products,” J. Food Sci., vol. 80, no. 1, pp. M123–M128, Jan. 2015, doi: 10.1111/1750-3841.12720.

Downloads

Published

2022-06-30

How to Cite

Wajiha Yousuf, Javaid Yousuf, Saif Ud Din, Maisoor Ahmed Nafees, Abdul Razaq, & Babar Hussain. (2022). A Review on Impacts, Resistance Pattern and Spoilage of Vegetables Associated Microbes. International Journal of Innovations in Science & Technology, 4(3), 763–788. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/336